導(dǎo)讀:無人駕駛不是指日可待,而是非常遙遠(yuǎn);我們了解生活的真相,我們?nèi)匀粺釔凵睢?/p>
無人駕駛不是指日可待,而是非常遙遠(yuǎn);我們了解生活的真相,我們?nèi)匀粺釔凵睢?/p>
無人駕駛是百年汽車工業(yè)的一個(gè)嶄新高度,也是人們對智慧出行夢寐以求的目標(biāo)。
今年以來,從拉斯維加斯電子商品展上各種無人駕駛技術(shù)的高調(diào)亮相,到許多汽車和科技公司陸續(xù)對無人駕駛商業(yè)計(jì)劃的激進(jìn)宣示,一些媒體開始大肆宣稱無人駕駛會(huì)比人們想象的時(shí)間更早到來。
當(dāng)前社會(huì)上和業(yè)界彌漫著一種浮躁,似乎無人駕駛就在眼前,誰不抓住它就會(huì)被淘汰,造成了資本市場的壓力和業(yè)界的普遍焦慮。
無人駕駛真的指日可待了嗎?
我的回答非常簡單:否。不僅否,還非常遙遠(yuǎn)。
主觀能動(dòng)性是無人駕駛的必要條件
要問為什么,首先要了解什么是無人駕駛和我們需要怎么樣的無人駕駛。
無人駕駛位于汽車自動(dòng)駕駛技術(shù)的頂端。按照美國自動(dòng)車工程學(xué)會(huì)(SAE)對自動(dòng)駕駛的五級分類,第一級至第三級為有人的自動(dòng)駕駛,或稱為輔助自動(dòng)駕駛,即人仍然要為駕駛的最后決策負(fù)責(zé)。在這些階段,所有自動(dòng)駕駛技術(shù)的應(yīng)用只是為了提高人們的駕駛體驗(yàn),尤其是安全體驗(yàn)。
第四級和第五級為無人自動(dòng)駕駛,即可以將人完全排除在駕駛決策之外,其中第四級為有限場景、第五級為無限場景下的無人駕駛。顯然,第四級和第五級是真正意義上的無人駕駛。
本文所探討的無人駕駛是指以人類出行為目的的第四級和第五級汽車自動(dòng)駕駛。
第四級無人駕駛可以在某些特定的場景下較快地實(shí)現(xiàn),但它不會(huì)對汽車工業(yè)產(chǎn)生顛覆性的改變,這是因?yàn)榇蠖鄶?shù)人都不會(huì)去買一輛只能在規(guī)定道路上或規(guī)定區(qū)域內(nèi)行駛的無人駕駛汽車。
追求自由是人的天性,正如美國交通部部長趙小蘭女士年初在底特律車展上所說:我們熱愛汽車,因?yàn)槲覀儫釔圩杂?。限制自由的無人駕駛汽車可能只是公共交通的延伸,不會(huì)取代今天面向個(gè)人擁有汽車的巨大市場。
要實(shí)現(xiàn)無限場景下的無人駕駛,安全即是初衷,也是最大的障礙。我們必須明白汽車是一件非常獨(dú)特的產(chǎn)品——它量大面廣并涉及人們必要的日常出行,而更重要的是它與人的生命安全息息相關(guān)。發(fā)展無人駕駛技術(shù)的首要目的是提高其安全性。
由于汽車駕駛過程中每個(gè)場景都不會(huì)重復(fù)而且復(fù)雜多變,在高速行駛中稍有差錯(cuò)就有付出生命代價(jià)的可能,所以要求無人駕駛必須具備類似人類合格駕駛員那樣能夠憑主觀意識舉一反三的主觀能動(dòng)性——這并不是哲學(xué)意義上的主觀能動(dòng)性,而是指無人駕駛在遇到任何不熟悉或突發(fā)場景時(shí)都能夠主動(dòng)地做出正確的判斷和操作,而且可以比人做得更好,從而取得高于人類駕駛的安全性。
在我們目前所處的交通環(huán)境中,一輛沒有主觀能動(dòng)性的無人駕駛汽車無疑是巨大的安全隱患,有違無人駕駛安全第一的原則。
為了降低甚至替代無人駕駛對主觀能動(dòng)性的依賴,人們想象了一種理想化的情景:厘米級別的高精地圖覆蓋所有汽車可以到達(dá)的地方;道路上的每一輛汽車都具備車對車、車對系統(tǒng)的智能互聯(lián)以避免可能發(fā)生的碰撞;而且還具備行人與車分離的客觀條件。
在這種情況下,無人駕駛汽車即使不完全具備主觀能動(dòng)性,也能在預(yù)定的道路上安全地自動(dòng)駕駛,猶如今天智能制造工廠中廣泛應(yīng)用的全自動(dòng)運(yùn)輸機(jī)(AGV)一樣。
目前某些接近這種條件的應(yīng)用場景正在出現(xiàn),以期在較短的時(shí)間內(nèi)實(shí)現(xiàn)第四級別有限場景下的無人駕駛。但是,要使所有場景滿足這些條件顯然是一項(xiàng)涉及整個(gè)社會(huì)生存空間變革浩瀚而巨大的工程,絕非一家或幾家企業(yè)甚至一個(gè)產(chǎn)業(yè)能夠完成,在可見的未來幾乎不會(huì)成為現(xiàn)實(shí)。
因此,主觀能動(dòng)性是無人駕駛的必要條件。沒有主觀能動(dòng)性的無人駕駛,是對科學(xué)的不尊重,是對生命的輕視,是對社會(huì)的不負(fù)責(zé)任。
主觀能動(dòng)性條件尚未成熟
如何才能實(shí)現(xiàn)主觀能動(dòng)下的無人駕駛?路徑可能有很多,但目前廣為采用并寄予厚望的是人工智能技術(shù)。
什么是人工智能?簡單地說,就是用人造的機(jī)器(比如計(jì)算機(jī))來實(shí)現(xiàn)人的感知和決策功能。人工智能技術(shù)經(jīng)過半個(gè)多世紀(jì)的發(fā)展,從早期的語言文字處理到今天的圖像語音識別,已經(jīng)有了長足的進(jìn)步。尤其是近年來,基于機(jī)器學(xué)習(xí)的人工智能技術(shù)有了突破性進(jìn)展,為我們生活的許多方面帶來了極大的方便,如醫(yī)療、家居、娛樂、制造、服務(wù)等。
然而,當(dāng)前的人工智能技術(shù)仍然處于初始的階段,還不具備支撐無人駕駛所需要的主觀能動(dòng)性的能力。
要想了解這一點(diǎn),我們不妨將人的智能分為三個(gè)層次:1)感性;2)理性:3)靈性。
感性即通過類似條件反射那樣獲得的信息和知識,如被電爐燙了一次就不會(huì)再去觸摸電爐;
理性即通過人的邏輯思維得出的知識,如做出如果電源關(guān)閉就可以清洗電爐這樣的邏輯判斷;
而靈性則是人在一定的感性和理性思維基礎(chǔ)之上的智慧思維,包括人的自我認(rèn)知、意識、情感以及主觀能動(dòng)性。例如人可以安全地利用電爐創(chuàng)造出各種美味佳肴,激發(fā)出無限的愉悅和享受的情感。
當(dāng)然人類這三個(gè)智能層次深度關(guān)聯(lián),相輔相成。靈性智慧思維是人類智能的最高層次。
與人的智能分類相應(yīng),人工智能通??梢苑譃槿齻€(gè)級別,即弱人工智能、通用人工智能 (也稱強(qiáng)人工智能)和超人工智能。
弱人工智能是指能在某個(gè)特定條件下應(yīng)用的人工智能,如圖像識別和語音識別等。弱人工智能可以實(shí)現(xiàn)人類某些具體定義下的邏輯推理。盡管它有時(shí)可以達(dá)到或超過人的能力(如下棋),但其實(shí)它并不真正擁有智能。一旦規(guī)則改變,它不會(huì)自主演進(jìn),即沒有意識,不具備主觀能動(dòng)性。
通用人工智能是指具有和人幾乎同等的智能,包括具有自覺意識、自主演進(jìn)以及主觀能動(dòng)性。
而超人工智能則是指將來的一種可能,智能機(jī)器或許可以具備超越人類智慧的智能。
在后兩個(gè)階段,人工智能既可以成為人類的朋友,也可能成為人類的敵人。所以,許多人工智能專家以及科技推動(dòng)者早已聯(lián)名呼吁人們必須警惕人工智能為人類帶來的可能災(zāi)難,并建立了以安全利用人工智能為宗旨的聯(lián)盟——未來生命學(xué)院(Future Life Institute) 。
今天,無論媒體對人工智能描繪的多么神奇,無論IBM的深藍(lán)(DeepBlue)以及谷歌阿法狗(AlphaGo)在和人類對弈過程中如何凱歌高奏,我們都應(yīng)該清醒地認(rèn)識到,目前人工智能技術(shù)還處于弱人工智能這個(gè)初級階段。
也就是說,今天的人工智能技術(shù)僅僅能夠?qū)崿F(xiàn)人類在非常有限條件下的邏輯推理,只能在人類事先設(shè)定的算法規(guī)律下進(jìn)行學(xué)習(xí)。它對人的智慧思維比如意識、知覺和情感還無能為力,還不具備主觀能動(dòng)性。
不具備主觀能動(dòng)性的弱人工智能在不涉及生命安全的領(lǐng)域中可以大有作為,如智能家具、智能娛樂、智能制造、智能服務(wù)等。對自動(dòng)駕駛而言,弱人工智能技術(shù)也能夠?yàn)檩o助自動(dòng)駕駛級別提供廣泛的應(yīng)用空間,使它真正成為人們安全愉悅駕駛的好幫手。
但是,對于無人駕駛來說,弱人工智能技術(shù)能提供的應(yīng)用空間還很有限,尚不能支持無人駕駛所必要的主觀能動(dòng)性的實(shí)現(xiàn)。
數(shù)字技術(shù)的局限
盡管無法證明,但我猜想從弱人工智能走向通用人工智能的主要障礙來自數(shù)字計(jì)算技術(shù)。對通用人工智能來說,數(shù)字計(jì)算技術(shù)可能是一種相對落后的技術(shù)。
數(shù)字計(jì)算本質(zhì)上是布爾邏輯推理(Boolean Logic) 的產(chǎn)物。布爾邏輯推理中最重要的定律是排中律,即所謂的非黑即白,沒有中間地帶?;诙M(jìn)制的數(shù)字計(jì)算機(jī)最基本的計(jì)算單元比特只有0和1兩種狀態(tài),因而在數(shù)字計(jì)算機(jī)中一切信息的表達(dá)和運(yùn)算都是用0和1 來進(jìn)行的。也就是說,所有信息在數(shù)字計(jì)算機(jī)中都以一種離散的數(shù)字形態(tài)存在。
然而,自然界中的變量幾乎都是連續(xù)的,人類的思維乃至生命過程更是連續(xù)的。當(dāng)我們用數(shù)字計(jì)算處理信息得到簡明快速優(yōu)越性的同時(shí),付出的卻是失去信息連續(xù)性這一重大代價(jià)。
在很多工程應(yīng)用領(lǐng)域中,連續(xù)變量是可以通過離散變量的大量迭代來趨近,所以數(shù)字化處理在很多工程應(yīng)用領(lǐng)域中大有可為。盡管如此,目前還沒有辦法通過數(shù)字計(jì)算來表達(dá)和處理人的意識、自我覺醒和主觀能動(dòng)。
至于谷歌的阿法狗在圍棋博奕中之所以可以打敗人類無敵手,乃是因?yàn)閲宓囊?guī)律完全符合布爾數(shù)理邏輯,圍棋所有的選項(xiàng)都可以用離散的數(shù)字模型完整地表達(dá)。
其實(shí),人們早已經(jīng)認(rèn)識到布爾邏輯的局限性。半個(gè)世紀(jì)前提出的模糊邏輯(Fuzzy Logic)就打破了布爾邏輯零一準(zhǔn)則的局限,提出一切皆有可能、只是程度不同的連續(xù)思維邏輯,而這種思維邏輯更接近人的思維邏輯。
事實(shí)上,布爾邏輯只是模糊邏輯的一個(gè)理想化特例。在模糊邏輯所依據(jù)的連續(xù)函數(shù)線上,布爾邏輯所處的僅僅一個(gè)點(diǎn)。顯然要用離散的一個(gè)點(diǎn)的邏輯來準(zhǔn)確地模擬人類連續(xù)的意識思維幾乎是不可能的。
所以,我相信通用人工智能的實(shí)現(xiàn)有賴于對數(shù)字時(shí)代的超越。
機(jī)器學(xué)習(xí)的真相與困境
無人駕駛控制決策的實(shí)現(xiàn)基于兩個(gè)方面。
首先是通過對汽車物理系統(tǒng)、運(yùn)行機(jī)理和運(yùn)行軌道的建模來實(shí)現(xiàn)人類可以準(zhǔn)確描述因果關(guān)系的控制策略。但是,這種可以準(zhǔn)確描述因果關(guān)系的控制策略極其有限,不足以滿足無人駕駛環(huán)境的高度不確定性。
因此,近年來機(jī)器學(xué)習(xí)被廣泛地應(yīng)用到無人駕駛技術(shù)開發(fā)中,以期通過大量的數(shù)據(jù)學(xué)習(xí)來提高無人駕駛的感知和決策能力。業(yè)界對機(jī)器學(xué)習(xí)技術(shù)寄于極大的期望。
然而,機(jī)器學(xué)習(xí)很難擔(dān)負(fù)起賦予汽車主觀能動(dòng)性的重任。這是因?yàn)闊o論機(jī)器學(xué)習(xí)的算法如何先進(jìn),無論它是卷積神經(jīng)網(wǎng)絡(luò)還是迭代神經(jīng)網(wǎng)絡(luò),歸根到底它都是通過離散的數(shù)字來表達(dá)事物之間的關(guān)聯(lián)關(guān)系而不是因果關(guān)系。
機(jī)器學(xué)習(xí)最根本的目標(biāo)是希望得到像人一樣能夠從有限的樣本中獲取通用的機(jī)理來識別無限可能的場景。但是,因果關(guān)系不明的關(guān)聯(lián)關(guān)系數(shù)字模型像一個(gè)黑箱,難以產(chǎn)生通用的規(guī)律和機(jī)理。
因此,機(jī)器學(xué)習(xí)所建立的數(shù)字模型及其算法缺乏外延生成功能,很難舉一反三。盡管人工智能領(lǐng)域已經(jīng)注意到了機(jī)器學(xué)習(xí)的這個(gè)局限并已展開研究,但理論上的突破尚待時(shí)日。
許多人工智能專家對業(yè)界過分夸大機(jī)器學(xué)習(xí)的作用表示極大的擔(dān)憂,如美國紐約大學(xué)知名人工智能教授Gary Marcus博士指出:對人工智能過度地炒作有可能導(dǎo)致其下一個(gè)冬天。
盡管對機(jī)器學(xué)習(xí)在無人駕駛中的應(yīng)用有很高的期待,但是目前基于機(jī)器學(xué)習(xí)的無人駕駛只能從過去學(xué)過的數(shù)字模型中找出最接近的情景來控制操作,無法像人類駕駛員那樣憑豐富的經(jīng)驗(yàn)和意識而舉一反三。
在這種情況下,無人駕駛有可能陷入視而不見、感而不知困境,還有可能具有精神分裂的特征。我們還不能將生命放心地交給這樣的無人駕駛。
我相信在數(shù)字技術(shù)時(shí)代,不管計(jì)算機(jī)芯片的速度如何快速迭代,也無論機(jī)器學(xué)習(xí)算法如何改進(jìn),也許只能推動(dòng)弱人工智能技術(shù)量的改進(jìn),很難獲得人工智能技術(shù)質(zhì)的飛躍。
人工智能的突破還有賴于對生命和物質(zhì)本身的基本屬性不斷深入地探索。也就是說,僅依靠機(jī)器學(xué)習(xí)的數(shù)字算法很難孕育出無人駕駛所需要的主觀能動(dòng)性。
無人駕駛的實(shí)現(xiàn)需要依賴數(shù)字技術(shù)的突破,依賴計(jì)算技術(shù)本身的革命。在仿生以及量子計(jì)算的演進(jìn)中,我們能夠看到無人駕駛的曙光。
商業(yè)化之路艱巨而漫長
即使人工智能技術(shù)有了質(zhì)的飛躍而可以支持無人駕駛所需的主觀能動(dòng)性,它的工程應(yīng)用開發(fā)和商業(yè)化還需要經(jīng)過一個(gè)艱巨而漫長的過程。
美國麻省理工學(xué)院Max Tegmark教授在2017年出版的人工智能專著《生命3.0》 中指出:人工智能技術(shù)的廣泛應(yīng)用應(yīng)經(jīng)過以下幾個(gè)步驟:
1、驗(yàn)證 (verification),即證明產(chǎn)品到達(dá)設(shè)計(jì)要求;
2、實(shí)證 (validation),即證明產(chǎn)品達(dá)到用戶的實(shí)用要求;
3、網(wǎng)絡(luò)安全 (security),即提供有效的手段來防止天災(zāi)或人為的攻擊;
4、風(fēng)險(xiǎn)控制 (Control),即提供發(fā)生重大事故時(shí)有效的控制方案。
目前,無人駕駛技術(shù)的研發(fā)主要還是集中在第一階段,即驗(yàn)證無人駕駛能做什么。第二階段更重要而挑戰(zhàn)更大,因?yàn)橛脩羰褂玫膱鼍皫缀跏菬o限的。在這個(gè)階段,不僅要問無人駕駛能做什么,還要問它不能做什么和不應(yīng)該做什么,要對無人駕駛的安全性做非常嚴(yán)格的驗(yàn)證,包括軟件的可靠性,硬件的可靠性,以及系統(tǒng)集成的可靠性。
這些驗(yàn)證必須嚴(yán)格遵照業(yè)界所公認(rèn)的工程標(biāo)準(zhǔn)。但是,這些標(biāo)準(zhǔn)目前還沒有形成,而且在短期內(nèi)還很難制定出來。所以,目前沒有任何無人駕駛企業(yè)能夠宣稱已經(jīng)或?qū)⒁瓿蔁o人駕駛的全部驗(yàn)證和實(shí)證工作。
從汽車構(gòu)架的角度來看,無人駕駛絕不是在現(xiàn)有的汽車上加上傳感器和控制算法那么簡單。汽車構(gòu)架幾乎要重新設(shè)計(jì),以滿足無人駕駛情況下的安全要求。
比如汽車的總線布置能否勝任日益增多電器節(jié)點(diǎn)之間安全可靠的通訊?汽車如何能夠隨時(shí)了解自身的健康狀況?軟件的更新?lián)Q代如何保證其安全可靠?網(wǎng)絡(luò)傳輸是否安全可靠?等等。因?yàn)樵跓o人駕駛的狀態(tài)下,汽車上任何一個(gè)小小的故障就可能造成生命的損失。
無人駕駛從樣車展示到商業(yè)實(shí)施有一個(gè)極其漫長的工程過程。僅僅從路試一項(xiàng)來看,著名咨詢公司蘭德的研究報(bào)告表明,無人駕駛要做到每行駛2億7千英里只有一個(gè)傷亡事故才能從統(tǒng)計(jì)學(xué)上證明它和有人駕駛具有同一級別的安全性。
近來許多關(guān)于無人駕駛上路的報(bào)道,不管是公交還是出租,無論是送貨還是送菜,基本上都只是演示而已。如果缺少踏踏實(shí)實(shí)的研究和工程開發(fā),過多的演示會(huì)產(chǎn)生弊大于利的效果,還有可能將無人駕駛斷送在示范的路上。
例如,Uber 的事件已經(jīng)在對社會(huì)產(chǎn)生了較大的負(fù)面影響。據(jù)美國汽車協(xié)會(huì)(AAA)的調(diào)查顯示,Uber 事件之后人們對無人駕駛不信任的比例較去年增加了10%。如果一旦 Waymo也出現(xiàn)像Uber那樣的致命事故,相信一定會(huì)對社會(huì)造成更大的負(fù)面影響,導(dǎo)致其無人駕駛項(xiàng)目的停滯不是沒有可能。最近福特汽車發(fā)布的無人駕駛報(bào)告就是以信任為題,以期提高人們對無人駕駛的信心。
正因?yàn)闊o人駕駛與生命息息相關(guān),如果沒有經(jīng)過嚴(yán)格的工程驗(yàn)證和實(shí)證過程,在短期內(nèi)任何貿(mào)然推出無人駕駛商業(yè)化的產(chǎn)品或服務(wù),其結(jié)果幾乎可以預(yù)料:如果不是實(shí)際上有人參與的無人駕駛試驗(yàn),那么以召回為結(jié)局的概率非常大。
將汽車輔助駕駛進(jìn)行到底
在走向無人駕駛的道路上有兩條截然不同的路徑。
一條是以谷歌為代表的一步到位的路徑。谷歌的邏輯有它的道理:人機(jī)共享的駕駛決策有很大的安全隱患,不如將駕駛?cè)拷唤o汽車。
另一條是以密西根大學(xué)及許多傳統(tǒng)汽車公司為代表的循序漸進(jìn)的路徑,即自動(dòng)駕駛的進(jìn)步應(yīng)該從第一級到第五級一步步地走。這也是為什么密西根大學(xué)對自動(dòng)駕駛項(xiàng)目稱為網(wǎng)聯(lián)自動(dòng)汽車(Connected and Automated Vehicle-CAV) 而不是單純的無人駕駛汽車。
密西根大學(xué)在三年前率先建立了第一個(gè)無人駕駛專用試驗(yàn)場 Mcity。密西根大學(xué)的機(jī)器人學(xué)院也在積極推動(dòng)各級自動(dòng)駕駛技術(shù)的研究開發(fā),并得到福特等企業(yè)的大力支持和緊密合作。
汽車產(chǎn)業(yè)在致力開發(fā)無人駕駛技術(shù)的同時(shí),在現(xiàn)階段仍然應(yīng)該將主要力量放在智能網(wǎng)聯(lián)技術(shù)在輔助自動(dòng)駕駛級別的應(yīng)用上;應(yīng)該放下焦慮,潛心專注地把智能網(wǎng)聯(lián)和ADAS技術(shù)的開發(fā)與應(yīng)用進(jìn)行到底。
如前所述,盡管弱人工智能技術(shù)還不足以支持完全的無人駕駛,但在輔助自動(dòng)駕駛中卻大有可為,所以智能駕駛不能只是為了無人駕駛。我相信,傳統(tǒng)汽車如通用、福特、上汽、長安,以及供應(yīng)商如博世等公司都在致力開發(fā)和應(yīng)用輔助自動(dòng)駕駛階段的智能技術(shù),真正為用戶帶來豐富美好的駕駛體驗(yàn),尤其是安全體驗(yàn)。
例如,通用在花巨資投入無人駕駛項(xiàng)目的同時(shí),早在2014就布局致力開發(fā)輔助駕駛級別的Super Cruise 項(xiàng)目,并于今年成功推出,取得了較好的經(jīng)濟(jì)效益。
腳踏實(shí)地,砥礪前行
正如一位智者所說,我們了解生活的真相,我們?nèi)匀粺釔凵睢?/p>
盡管通向無人駕駛的路上充滿了荊棘,盡管它的實(shí)現(xiàn)還非常遙遠(yuǎn),但我們不能停下腳步。我們滿懷希望,只是我們應(yīng)該認(rèn)清真相,腳踏實(shí)地,砥礪前行。
在通向美好無人駕駛的路上,汽車產(chǎn)業(yè)應(yīng)該注意避免那種你追我趕的大躍進(jìn)心態(tài),從而做到對有限資源的合理分配。為避免在同一層次上過多的重復(fù),汽車產(chǎn)業(yè)更應(yīng)該聯(lián)合起來,走合作、突破、共享的道路。
目前業(yè)界推進(jìn)有限場景下的無人駕駛有其重要的意義,因?yàn)檫@是走向無人駕駛的必經(jīng)之路。由于無人駕駛從有限場景到無限場景的過度還有很長的路要走,而且其盈利模式還不清晰,資本市場應(yīng)該給企業(yè)尤其是初創(chuàng)企業(yè)以更多的耐心和支持。
同時(shí),在無人駕駛技術(shù)的上任何突破應(yīng)該重視其在輔助自動(dòng)駕駛中的商業(yè)應(yīng)用,L4 開花 L3 結(jié)果不失為一種好的策略。
如果產(chǎn)業(yè)及資本市場在投入巨資支持無人駕駛技術(shù)應(yīng)用開發(fā)的同時(shí),也能大力支持人工智能的基礎(chǔ)研究,這樣將會(huì)有助于計(jì)算機(jī)技術(shù)和人工智能技術(shù)的突破,早日迎來完全無人駕駛的曙光。